Building Sentiment Lexicons for All Major Languages

نویسندگان

  • Yanqing Chen
  • Steven Skiena
چکیده

Sentiment analysis in a multilingual world remains a challenging problem, because developing language-specific sentiment lexicons is an extremely resourceintensive process. Such lexicons remain a scarce resource for most languages. In this paper, we address this lexicon gap by building high-quality sentiment lexicons for 136 major languages. We integrate a variety of linguistic resources to produce an immense knowledge graph. By appropriately propagating from seed words, we construct sentiment lexicons for each component language of our graph. Our lexicons have a polarity agreement of 95.7% with published lexicons, while achieving an overall coverage of 45.2%. We demonstrate the performance of our lexicons in an extrinsic analysis of 2,000 distinct historical figures’ Wikipedia articles on 30 languages. Despite cultural difference and the intended neutrality of Wikipedia articles, our lexicons show an average sentiment correlation of 0.28 across all language pairs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lost in Translations? Building Sentiment Lexicons using Context Based Machine Translation

In this paper, we propose a simple yet efective approach to automatically building sentiment lexicons from English sentiment lexicons using publicly available online machine translation services. The method does not rely on any semantic resources or bilingual dictionaries, and can be applied to many languages. We propose to overcome the low coverage problem through putting each English sentimen...

متن کامل

Twitter as a Comparable Corpus to build Multilingual Affective Lexicons

Résumé The main issue of any lexicon-based sentiment analysis system is the lack of affective lexicons. Such lexicons contain lists of words annotated with their affective classes. There exist some number of such resources but only for few languages and often for a small number of affective classes, generally restricted to two classes (positive and negative). In this paper we propose to use Twi...

متن کامل

A Large Scale Arabic Sentiment Lexicon for Arabic Opinion Mining

Most opinion mining methods in English rely successfully on sentiment lexicons, such as English SentiWordnet (ESWN). While there have been efforts towards building Arabic sentiment lexicons, they suffer from many deficiencies: limited size, unclear usability plan given Arabic’s rich morphology, or nonavailability publicly. In this paper, we address all of these issues and produce the first publ...

متن کامل

MHSubLex: Using Metaheuristic Methods for Subjectivity Classification of Microblogs

In Web 2.0, people are free to share their experiences, views, and opinions. One of the problems that arises in web 2.0 is the sentiment analysis of texts produced by users in outlets such as Twitter. One of main the tasks of sentiment analysis is subjectivity classification. Our aim is to classify the subjectivity of Tweets. To this end, we create subjectivity lexicons in which the words into ...

متن کامل

Building a robust sentiment lexicon with (almost) no resource

Creating sentiment polarity lexicons is labor intensive. Automatically translating them from resourceful languages requires in-domain machine translation systems, which rely on large quantities of bi-texts. In this paper, we propose to replace machine translation by transferring words from the lexicon through word embeddings aligned across languages with a simple linear transform. The approach ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014